半導體材料
外觀
此條目沒有列出任何參考或來源。 (2024年1月) |
此條目可參照英語維基百科相應條目來擴充。 |
半導體材料是一類固體材料,其導電性介於導體和絕緣體之間,屬於半導體。
發展
[編輯]- 1833年,英國的法拉第發現硫化銀是半導體材料,因為它的電阻隨著溫度上升而降低。
- 1874年,德國的布勞恩注意到硫化物的電導率與所加電壓的方向有關,這就是半導體的整流作用。
- 1947年12月23日,巴丁與布拉坦進一步使用點接觸電晶體製作出一個語音放大器,電晶體正式發明。
- 1958年9月12日,美國的基爾比,細心地切了一塊鍺作為電阻,再用一塊pn接面做為電容,製造出一個震盪器電路。
分類
[編輯]以原料分為:
- 元素半導體材料:以單一元素組成的半導體,屬於這一材料的有硼、金剛石、鍺、矽、灰錫、銻、硒、碲等,其中以鍺、矽、錫研究較早,製備製程相對成熟。
- 化合物半導體材料:由兩種或兩種以上無機物化合成的半導體,種類繁多,已知的二元化合物就有數百種。
- 有機半導體:同時是有機物質的半導體。
列表
[編輯]族 | 元素 | 化學式 | 能隙 (eV) | 直接帶隙和間接帶隙 | |
---|---|---|---|---|---|
IV | 1 | 矽 | Si | 1.12[1][2] | 間接帶隙 |
IV | 1 | Germanium | Ge | 0.67[1][2] | 間接帶隙 |
IV | 1 | Material properties of diamond | C | 5.47[1][2] | 間接帶隙 |
IV | 1 | 錫, α-Sn | Sn | 0[3][4] | 半金屬 (能帶理論) |
IV | 2 | 碳化矽, 3C-SiC | SiC | 2.3[1] | 間接帶隙 |
IV | 2 | 碳化矽, 4H-SiC | SiC | 3.3[1] | 間接帶隙 |
IV | 2 | 碳化矽, 6H-SiC | SiC | 3.0[1] | 間接帶隙 |
VI | 1 | 硫, 硫的同素異形體 | S8 | 2.6[5] | |
VI | 1 | 硒 | Se | 1.83 - 2.0[6] | 間接帶隙 |
VI | 1 | 硒 | Se | 2.05 | 間接帶隙 |
VI | 1 | 碲 | Te | 0.33[7] | |
III-V | 2 | 氮化硼, cubic | BN | 6.36[8] | 間接帶隙 |
III-V | 2 | 氮化硼, hexagonal | BN | 5.96[8] | quasi-direct |
III-V | 2 | 氮化硼 | BN | 5.5[9] | |
III-V | 2 | 磷化硼 | BP | 2.1[10] | 間接帶隙 |
III-V | 2 | 砷化硼 | BAs | 1.82 | 直接帶隙 |
III-V | 2 | 砷化硼 | B12As2 | 3.47 | 間接帶隙 |
III-V | 2 | 氮化鋁 | AlN | 6.28[1] | 直接帶隙 |
III-V | 2 | 磷化鋁 | AlP | 2.45[2] | 間接帶隙 |
III-V | 2 | 砷化鋁 | AlAs | 2.16[2] | 間接帶隙 |
III-V | 2 | 銻化鋁 | AlSb | 1.6/2.2[2] | 直接帶隙/direct |
III-V | 2 | 氮化鎵 | GaN | 3.44[1][2] | 直接帶隙 |
III-V | 2 | 磷化鎵 | GaP | 2.26[1][2] | 間接帶隙 |
III-V | 2 | Gallium arsenide | GaAs | 1.42[1][2] | 直接帶隙 |
III-V | 2 | 銻化鎵 | GaSb | 0.73[1][2] | 直接帶隙 |
III-V | 2 | 氮化銦 | InN | 0.7[1] | 直接帶隙 |
III-V | 2 | 磷化銦 | InP | 1.35[1] | 直接帶隙 |
III-V | 2 | 砷化銦 | InAs | 0.36[1] | 直接帶隙 |
III-V | 2 | 銻化銦 | InSb | 0.17[1] | 直接帶隙 |
II-VI | 2 | 硒化鎘 | CdSe | 1.74[2] | 直接帶隙 |
II-VI | 2 | 硫化鎘 | CdS | 2.42[2] | 直接帶隙 |
II-VI | 2 | 碲化鎘 | CdTe | 1.49[2] | 直接帶隙 |
II-VI | 2 | 氧化鋅 | ZnO | 3.37[2] | 直接帶隙 |
II-VI | 2 | 硒化鋅 | ZnSe | 2.7[2] | 直接帶隙 |
II-VI | 2 | 硫化鋅 | ZnS | 3.54/3.91[2] | 直接帶隙 |
II-VI | 2 | 碲化鋅 | ZnTe | 2.3[2] | 直接帶隙 |
I-VII | 2 | 氯化亞銅 | CuCl | 3.4[11] | 直接帶隙 |
I-VI | 2 | Copper sulfide | Cu2S | 1.2[10] | 間接帶隙 |
IV-VI | 2 | 硒化鉛 | PbSe | 0.26[7] | 直接帶隙 |
IV-VI | 2 | 硫化鉛 | PbS | 0.37[12] | |
IV-VI | 2 | 碲化鉛 | PbTe | 0.32[1] | |
IV-VI | 2 | 硫化亞錫 | SnS | 1.3/1.0[13] | 直接帶隙/間接帶隙 |
IV-VI | 2 | 二硫化錫 | SnS2 | 2.2[14] | |
IV-VI | 2 | 碲化亞錫 | SnTe | 0.18 | |
IV-VI | 3 | Lead tin telluride | Pb1−xSnxTe | 0-0.29 | |
V-VI | 2 | 碲化鉍 | Bi2Te3 | 0.13[1] | |
II-V | 2 | 磷化鎘 | Cd3P2 | 0.5[15] | |
II-V | 2 | 砷化鎘 | Cd3As2 | 0 | |
II-V | 2 | 磷化鋅 | Zn3P2 | 1.5[16] | 直接帶隙 |
II-V | 2 | 二磷化鋅 | ZnP2 | 2.1[17] | |
II-V | 2 | 砷化鋅 | Zn3As2 | 1.0[18] | |
II-V | 2 | 銻化鋅 | Zn3Sb2 | ||
氧 | 2 | 二氧化鈦, 銳鈦礦 | TiO2 | 3.20[19] | 間接帶隙 |
氧 | 2 | 二氧化鈦, 金紅石 | TiO2 | 3.0[19] | 直接帶隙 |
氧 | 2 | 二氧化鈦, 板鈦礦 | TiO2 | 3.26[19] | |
氧 | 2 | 氧化亞銅 | Cu2O | 2.17[20] | |
氧 | 2 | 氧化銅 | CuO | 1.2 | |
氧 | 2 | 二氧化鈾 | UO2 | 1.3 | |
氧 | 2 | 二氧化錫 | SnO2 | 3.7 | |
氧 | 3 | 鈦酸鋇 | BaTiO3 | 3 | |
氧 | 3 | 鈦酸鍶 | SrTiO3 | 3.3 | |
氧 | 3 | 鈮酸鋰 | LiNbO3 | 4 | |
V-VI | 2 | monoclinic 二氧化釩 | VO2 | 0.7[21] | 光學帶隙 |
2 | 碘化鉛 | PbI2 | 2.4[22] | ||
2 | 二硫化鉬 | MoS2 | 1.23 eV (2H)[23] | 間接帶隙 | |
2 | Gallium(II) selenide | GaSe | 2.1 | 間接帶隙 | |
2 | 硒化銦 | InSe | 1.26-2.35 eV[24] | 直接帶隙 (2D間接帶隙) | |
2 | 硫化亞錫 | SnS | >1.5 eV | 直接帶隙 | |
2 | 硫化鉍 | Bi2S3 | 1.3[1] | ||
Magnetic, diluted (DMS)[25] | 3 | Gallium manganese arsenide | GaMnAs | ||
Magnetic, diluted (DMS) | 3 | Lead manganese telluride | PbMnTe | ||
4 | Lanthanum calcium manganate | La0.7Ca0.3MnO3 | |||
2 | 氧化亞鐵 | FeO | 2.2 [26] | ||
2 | 一氧化鎳 | NiO | 3.6–4.0 | 直接帶隙[27][28] | |
2 | Europium(II) oxide | EuO | |||
2 | 硫化亞銪 | EuS | |||
2 | 溴化鉻 | CrBr3 | |||
其它 | 3 | Copper indium selenide, CIS | CuInSe2 | 1 | 直接帶隙 |
其它 | 3 | Silver gallium sulfide | AgGaS2 | ||
其它 | 3 | Zinc silicon phosphide | ZnSiP2 | 2.0[10] | |
其它 | 2 | 三硫化二砷 雌黃 | As2S3 | 2.7[29] | 直接帶隙 |
其它 | 2 | 硫化砷 雄黃 | As4S4 | ||
其它 | 2 | Platinum silicide | PtSi | ||
其它 | 2 | 碘化鉍 | BiI3 | ||
其它 | 2 | 碘化汞 | HgI2 | ||
其它 | 2 | 溴化亞鉈 | TlBr | 2.68[30] | |
其它 | 2 | 硫化銀 | Ag2S | 0.9[31] | |
其它 | 2 | Iron disulfide | FeS2 | 0.95[32] | |
其它 | 4 | Copper zinc tin sulfide, CZTS | Cu2ZnSnS4 | 1.49 | 直接帶隙 |
其它 | 4 | Copper zinc antimony sulfide, CZAS | Cu1.18Zn0.40Sb1.90S7.2 | 2.2[33] | 直接帶隙 |
其它 | 3 | Copper tin sulfide, CTS | Cu2SnS3 | 0.91[10] | 直接帶隙 |
合金表
[編輯]參見
[編輯]參考文獻
[編輯]- ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 NSM Archive - Physical Properties of Semiconductors. www.ioffe.ru. [2010-07-10]. (原始內容存檔於2015-09-28).
- ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 Safa O. Kasap; Peter Capper. Springer handbook of electronic and photonic materials. Springer. 2006: 54,327. ISBN 978-0-387-26059-4.
- ^ S.H. Groves, C.R. Pidgeon, A.W. Ewald, R.J. Wagner Journal of Physics and Chemistry of Solids, Volume 31, Issue 9, September 1970, Pages 2031-2049 (1970). Interband magnetoreflection of α-Sn.
- ^ Tin, Sn. www.matweb.com. [2024-02-20]. (原始內容存檔於2017-12-01).
- ^ Abass, A. K.; Ahmad, N. H. Indirect band gap investigation of orthorhombic single crystals of sulfur. Journal of Physics and Chemistry of Solids. 1986, 47 (2): 143. Bibcode:1986JPCS...47..143A. doi:10.1016/0022-3697(86)90123-X.
- ^ Todorov, T. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material. Nature Communications. 2017, 8 (1): 682. Bibcode:2017NatCo...8..682T. PMC 5613033 . PMID 28947765. S2CID 256640449. doi:10.1038/s41467-017-00582-9.
- ^ 7.0 7.1 Dorf, Richard. The Electrical Engineering Handbook. CRC Press. 1993: 2235–2236. ISBN 0-8493-0185-8.
- ^ 8.0 8.1 Evans, D A; McGlynn, A G; Towlson, B M; Gunn, M; Jones, D; Jenkins, T E; Winter, R; Poolton, N R J. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy (PDF). Journal of Physics: Condensed Matter. 2008, 20 (7): 075233 [2024-02-20]. Bibcode:2008JPCM...20g5233E. S2CID 52027854. doi:10.1088/0953-8984/20/7/075233. hdl:2160/612 . (原始內容存檔 (PDF)於2023-05-24).
- ^ Boron nitride nanotube. www.matweb.com. [2024-02-20]. (原始內容存檔於2024-02-20).
- ^ 10.0 10.1 10.2 10.3 Madelung, O. Semiconductors: Data Handbook. Birkhäuser. 2004: 1 [2024-02-20]. ISBN 978-3-540-40488-0. (原始內容存檔於2023-05-16).
- ^ Claus F. Klingshirn. Semiconductor optics. Springer. 1997: 127. ISBN 978-3-540-61687-0.
- ^ Lead(II) sulfide. www.matweb.com.
- ^ Patel, Malkeshkumar; Indrajit Mukhopadhyay; Abhijit Ray. Annealing influence over structural and optical properties of sprayed SnS thin films. Optical Materials. 26 May 2013, 35 (9): 1693–1699. Bibcode:2013OptMa..35.1693P. doi:10.1016/j.optmat.2013.04.034.
- ^ Burton, Lee A.; Whittles, Thomas J.; Hesp, David; Linhart, Wojciech M.; Skelton, Jonathan M.; Hou, Bo; Webster, Richard F.; O'Dowd, Graeme; Reece, Christian; Cherns, David; Fermin, David J.; Veal, Tim D.; Dhanak, Vin R.; Walsh, Aron. Electronic and optical properties of single crystal SnS2: An earth-abundant disulfide photocatalyst. Journal of Materials Chemistry A. 2016, 4 (4): 1312–1318. doi:10.1039/C5TA08214E. hdl:10044/1/41359 .
- ^ Haacke, G.; Castellion, G. A. Preparation and Semiconducting Properties of Cd3P2. Journal of Applied Physics. 1964, 35 (8): 2484–2487. Bibcode:1964JAP....35.2484H. doi:10.1063/1.1702886.
- ^ Kimball, Gregory M.; Müller, Astrid M.; Lewis, Nathan S.; Atwater, Harry A. Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2 (PDF). Applied Physics Letters. 2009, 95 (11): 112103 [2024-02-20]. Bibcode:2009ApPhL..95k2103K. ISSN 0003-6951. doi:10.1063/1.3225151. (原始內容存檔 (PDF)於2022-11-22).
- ^ Syrbu, N. N.; Stamov, I. G.; Morozova, V. I.; Kiossev, V. K.; Peev, L. G. Energy band structure of Zn3P2, ZnP2 and CdP2 crystals on wavelength modulated photoconductivity and photoresponnse spectra of Schottky diodes investigation. Proceedings of the First International Symposium on the Physics and Chemistry of II-V Compounds. 1980: 237–242.
- ^ Botha, J. R.; Scriven, G. J.; Engelbrecht, J. A. A.; Leitch, A. W. R. Photoluminescence properties of metalorganic vapor phase epitaxial Zn3As2. Journal of Applied Physics. 1999, 86 (10): 5614–5618. Bibcode:1999JAP....86.5614B. doi:10.1063/1.371569.
- ^ 19.0 19.1 19.2 Rahimi, N.; Pax, R. A.; MacA. Gray, E. Review of functional titanium oxides. I: TiO2 and its modifications. Progress in Solid State Chemistry. 2016, 44 (3): 86–105. doi:10.1016/j.progsolidstchem.2016.07.002.
- ^ O. Madelung; U. Rössler; M. Schulz (編). Cuprous oxide (Cu2O) band structure, band energies. Landolt-Börnstein – Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology. Landolt-Börnstein - Group III Condensed Matter. 41C: Non-Tetrahedrally Bonded Elements and Binary Compounds I. 1998: 1–4. ISBN 978-3-540-64583-2. doi:10.1007/10681727_62.
- ^ Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO 2, V 6 O 13, and V 2 O 3. Physical Review B. 1990, 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. PMID 9994356. doi:10.1103/physrevb.41.4993.
- ^ Sinha, Sapna. Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene. Nature Communications. 2020, 11 (1): 823. Bibcode:2020NatCo..11..823S. PMC 7010709 . PMID 32041958. S2CID 256633781. doi:10.1038/s41467-020-14481-z.
- ^ Kobayashi, K.; Yamauchi, J. Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Physical Review B. 1995, 51 (23): 17085–17095. Bibcode:1995PhRvB..5117085K. PMID 9978722. doi:10.1103/PhysRevB.51.17085.
- ^ Arora, Himani. Charge transport in two-dimensional materials and their electronic applications (PDF). Doctoral Dissertation. 2020 [July 1, 2021]. (原始內容存檔 (PDF)於2024-01-05).
- ^ B. G. Yacobi Semiconductor materials: an introduction to basic principles (頁面存檔備份,存於網際網路檔案館) Springer, 2003, ISBN 0-306-47361-5
- ^ Kumar, Manish; Sharma, Anjna; Maurya, Indresh Kumar; Thakur, Alpana; Kumar, Sunil. Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities. Journal of Taibah University for Science. 2019, 13: 280–285 [2024-02-20]. S2CID 139826266. doi:10.1080/16583655.2019.1565437 . (原始內容存檔於2023-05-11).
- ^ Synthesis and Characterization of Nano-Dimensional Nickelous Oxide (NiO) Semiconductor S. Chakrabarty and K. Chatterjee
- ^ Synthesis and Room Temperature Magnetic Behavior of Nickel Oxide Nanocrystallites Kwanruthai Wongsaprom*[a] and Santi Maensiri [b]
- ^ Arsenic sulfide (As2S3). [2024-02-20]. (原始內容存檔於2018-10-07).
- ^ Temperature Dependence of Spectroscopic Performance of Thallium Bromide X- and Gamma-Ray Detectors. [2024-02-20]. (原始內容存檔於2019-06-18).
- ^ HODES; Ebooks Corporation. Chemical Solution Deposition of Semiconductor Films. CRC Press. 8 October 2002: 319– [28 June 2011]. ISBN 978-0-8247-4345-1.
- ^ Arumona Edward Arumona; Amah A N. Density Functional Theory Calculation of Band Gap of Iron (II) disulfide and Tellurium. Advanced Journal of Graduate Research. 2018, 3: 41–46. doi:10.21467/ajgr.3.1.41-46 .
- ^ Prashant K Sarswat; Michael L Free. Enhanced Photoelectrochemical Response from Copper Antimony Zinc Sulfide Thin Films on Transparent Conducting Electrode. International Journal of Photoenergy. 2013, 2013: 1–7. doi:10.1155/2013/154694 .
- ^ Trukhan, V. M.; Izotov, A. D.; Shoukavaya, T. V. Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics. Inorganic Materials. 2014, 50 (9): 868–873. S2CID 94409384. doi:10.1134/S0020168514090143.
- ^ Borisenko, Sergey; et al. Experimental Realization of a Three-Dimensional Dirac Semimetal. Physical Review Letters. 2014, 113 (27603): 027603. Bibcode:2014PhRvL.113b7603B. PMID 25062235. S2CID 19882802. arXiv:1309.7978 . doi:10.1103/PhysRevLett.113.027603.
- ^ Cisowski, J. Level Ordering in II3-V2 Semiconducting Compounds. Physica Status Solidi B. 1982, 111 (1): 289–293. Bibcode:1982PSSBR.111..289C. doi:10.1002/pssb.2221110132.