半导体材料
外观
此条目没有列出任何参考或来源。 (2024年1月) |
此条目可参照英语维基百科相应条目来扩充。 |
半导体材料是一类固体材料,其导电性介于导体和绝缘体之间,属于半导体。
发展
[编辑]- 1833年,英国的法拉第发现硫化银是半导体材料,因为它的电阻随着温度上升而降低。
- 1874年,德国的布劳恩注意到硫化物的电导率与所加电压的方向有关,这就是半导体的整流作用。
- 1947年12月23日,巴丁与布拉坦进一步使用点接触晶体管制作出一个语音放大器,晶体管正式发明。
- 1958年9月12日,美国的基尔比,细心地切了一块锗作为电阻,再用一块pn接面做为电容,制造出一个震荡器电路。
分类
[编辑]以原料分为:
- 元素半导体材料:以单一元素组成的半导体,属于这一材料的有硼、金刚石、锗、硅、灰锡、锑、硒、碲等,其中以锗、硅、锡研究较早,制备工艺相对成熟。
- 复合半导体材料:由两种或两种以上无机物化合成的半导体,种类繁多,已知的二元化合物就有数百种。
- 有机半导体:同时是有机物质的半导体。
列表
[编辑]族 | 元素 | 化学式 | 能隙 (eV) | 直接带隙和间接带隙 | |
---|---|---|---|---|---|
IV | 1 | 硅 | Si | 1.12[1][2] | 间接带隙 |
IV | 1 | Germanium | Ge | 0.67[1][2] | 间接带隙 |
IV | 1 | Material properties of diamond | C | 5.47[1][2] | 间接带隙 |
IV | 1 | 锡, α-Sn | Sn | 0[3][4] | 半金属 (能带理论) |
IV | 2 | 碳化硅, 3C-SiC | SiC | 2.3[1] | 间接带隙 |
IV | 2 | 碳化硅, 4H-SiC | SiC | 3.3[1] | 间接带隙 |
IV | 2 | 碳化硅, 6H-SiC | SiC | 3.0[1] | 间接带隙 |
VI | 1 | 硫, 硫的同素异形体 | S8 | 2.6[5] | |
VI | 1 | 硒 | Se | 1.83 - 2.0[6] | 间接带隙 |
VI | 1 | 硒 | Se | 2.05 | 间接带隙 |
VI | 1 | 碲 | Te | 0.33[7] | |
III-V | 2 | 氮化硼, cubic | BN | 6.36[8] | 间接带隙 |
III-V | 2 | 氮化硼, hexagonal | BN | 5.96[8] | quasi-direct |
III-V | 2 | 氮化硼 | BN | 5.5[9] | |
III-V | 2 | 磷化硼 | BP | 2.1[10] | 间接带隙 |
III-V | 2 | 砷化硼 | BAs | 1.82 | 直接带隙 |
III-V | 2 | 砷化硼 | B12As2 | 3.47 | 间接带隙 |
III-V | 2 | 氮化铝 | AlN | 6.28[1] | 直接带隙 |
III-V | 2 | 磷化铝 | AlP | 2.45[2] | 间接带隙 |
III-V | 2 | 砷化铝 | AlAs | 2.16[2] | 间接带隙 |
III-V | 2 | 锑化铝 | AlSb | 1.6/2.2[2] | 直接带隙/direct |
III-V | 2 | 氮化镓 | GaN | 3.44[1][2] | 直接带隙 |
III-V | 2 | 磷化镓 | GaP | 2.26[1][2] | 间接带隙 |
III-V | 2 | Gallium arsenide | GaAs | 1.42[1][2] | 直接带隙 |
III-V | 2 | 锑化镓 | GaSb | 0.73[1][2] | 直接带隙 |
III-V | 2 | 氮化铟 | InN | 0.7[1] | 直接带隙 |
III-V | 2 | 磷化铟 | InP | 1.35[1] | 直接带隙 |
III-V | 2 | 砷化铟 | InAs | 0.36[1] | 直接带隙 |
III-V | 2 | 锑化铟 | InSb | 0.17[1] | 直接带隙 |
II-VI | 2 | 硒化镉 | CdSe | 1.74[2] | 直接带隙 |
II-VI | 2 | 硫化镉 | CdS | 2.42[2] | 直接带隙 |
II-VI | 2 | 碲化镉 | CdTe | 1.49[2] | 直接带隙 |
II-VI | 2 | 氧化锌 | ZnO | 3.37[2] | 直接带隙 |
II-VI | 2 | 硒化锌 | ZnSe | 2.7[2] | 直接带隙 |
II-VI | 2 | 硫化锌 | ZnS | 3.54/3.91[2] | 直接带隙 |
II-VI | 2 | 碲化锌 | ZnTe | 2.3[2] | 直接带隙 |
I-VII | 2 | 氯化亚铜 | CuCl | 3.4[11] | 直接带隙 |
I-VI | 2 | Copper sulfide | Cu2S | 1.2[10] | 间接带隙 |
IV-VI | 2 | 硒化铅 | PbSe | 0.26[7] | 直接带隙 |
IV-VI | 2 | 硫化铅 | PbS | 0.37[12] | |
IV-VI | 2 | 碲化铅 | PbTe | 0.32[1] | |
IV-VI | 2 | 硫化亚锡 | SnS | 1.3/1.0[13] | 直接带隙/间接带隙 |
IV-VI | 2 | 二硫化锡 | SnS2 | 2.2[14] | |
IV-VI | 2 | 碲化亚锡 | SnTe | 0.18 | |
IV-VI | 3 | Lead tin telluride | Pb1−xSnxTe | 0-0.29 | |
V-VI | 2 | 碲化铋 | Bi2Te3 | 0.13[1] | |
II-V | 2 | 磷化镉 | Cd3P2 | 0.5[15] | |
II-V | 2 | 砷化镉 | Cd3As2 | 0 | |
II-V | 2 | 磷化锌 | Zn3P2 | 1.5[16] | 直接带隙 |
II-V | 2 | 二磷化锌 | ZnP2 | 2.1[17] | |
II-V | 2 | 砷化锌 | Zn3As2 | 1.0[18] | |
II-V | 2 | 锑化锌 | Zn3Sb2 | ||
氧 | 2 | 二氧化钛, 锐钛矿 | TiO2 | 3.20[19] | 间接带隙 |
氧 | 2 | 二氧化钛, 金红石 | TiO2 | 3.0[19] | 直接带隙 |
氧 | 2 | 二氧化钛, 板钛矿 | TiO2 | 3.26[19] | |
氧 | 2 | 氧化亚铜 | Cu2O | 2.17[20] | |
氧 | 2 | 氧化铜 | CuO | 1.2 | |
氧 | 2 | 二氧化铀 | UO2 | 1.3 | |
氧 | 2 | 二氧化锡 | SnO2 | 3.7 | |
氧 | 3 | 钛酸钡 | BaTiO3 | 3 | |
氧 | 3 | 钛酸锶 | SrTiO3 | 3.3 | |
氧 | 3 | 铌酸锂 | LiNbO3 | 4 | |
V-VI | 2 | monoclinic 二氧化钒 | VO2 | 0.7[21] | 光学带隙 |
2 | 碘化铅 | PbI2 | 2.4[22] | ||
2 | 二硫化钼 | MoS2 | 1.23 eV (2H)[23] | 间接带隙 | |
2 | Gallium(II) selenide | GaSe | 2.1 | 间接带隙 | |
2 | 硒化铟 | InSe | 1.26-2.35 eV[24] | 直接带隙 (2D间接带隙) | |
2 | 硫化亚锡 | SnS | >1.5 eV | 直接带隙 | |
2 | 硫化铋 | Bi2S3 | 1.3[1] | ||
Magnetic, diluted (DMS)[25] | 3 | Gallium manganese arsenide | GaMnAs | ||
Magnetic, diluted (DMS) | 3 | Lead manganese telluride | PbMnTe | ||
4 | Lanthanum calcium manganate | La0.7Ca0.3MnO3 | |||
2 | 氧化亚铁 | FeO | 2.2 [26] | ||
2 | 一氧化镍 | NiO | 3.6–4.0 | 直接带隙[27][28] | |
2 | Europium(II) oxide | EuO | |||
2 | 硫化亚铕 | EuS | |||
2 | 溴化铬 | CrBr3 | |||
其它 | 3 | Copper indium selenide, CIS | CuInSe2 | 1 | 直接带隙 |
其它 | 3 | Silver gallium sulfide | AgGaS2 | ||
其它 | 3 | Zinc silicon phosphide | ZnSiP2 | 2.0[10] | |
其它 | 2 | 三硫化二砷 雌黄 | As2S3 | 2.7[29] | 直接带隙 |
其它 | 2 | 硫化砷 雄黄 | As4S4 | ||
其它 | 2 | Platinum silicide | PtSi | ||
其它 | 2 | 碘化铋 | BiI3 | ||
其它 | 2 | 碘化汞 | HgI2 | ||
其它 | 2 | 溴化亚铊 | TlBr | 2.68[30] | |
其它 | 2 | 硫化银 | Ag2S | 0.9[31] | |
其它 | 2 | Iron disulfide | FeS2 | 0.95[32] | |
其它 | 4 | Copper zinc tin sulfide, CZTS | Cu2ZnSnS4 | 1.49 | 直接带隙 |
其它 | 4 | Copper zinc antimony sulfide, CZAS | Cu1.18Zn0.40Sb1.90S7.2 | 2.2[33] | 直接带隙 |
其它 | 3 | Copper tin sulfide, CTS | Cu2SnS3 | 0.91[10] | 直接带隙 |
合金表
[编辑]参见
[编辑]参考文献
[编辑]- ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 NSM Archive - Physical Properties of Semiconductors. www.ioffe.ru. [2010-07-10]. (原始内容存档于2015-09-28).
- ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 Safa O. Kasap; Peter Capper. Springer handbook of electronic and photonic materials. Springer. 2006: 54,327. ISBN 978-0-387-26059-4.
- ^ S.H. Groves, C.R. Pidgeon, A.W. Ewald, R.J. Wagner Journal of Physics and Chemistry of Solids, Volume 31, Issue 9, September 1970, Pages 2031-2049 (1970). Interband magnetoreflection of α-Sn.
- ^ Tin, Sn. www.matweb.com. [2024-02-20]. (原始内容存档于2017-12-01).
- ^ Abass, A. K.; Ahmad, N. H. Indirect band gap investigation of orthorhombic single crystals of sulfur. Journal of Physics and Chemistry of Solids. 1986, 47 (2): 143. Bibcode:1986JPCS...47..143A. doi:10.1016/0022-3697(86)90123-X.
- ^ Todorov, T. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material. Nature Communications. 2017, 8 (1): 682. Bibcode:2017NatCo...8..682T. PMC 5613033 . PMID 28947765. S2CID 256640449. doi:10.1038/s41467-017-00582-9.
- ^ 7.0 7.1 Dorf, Richard. The Electrical Engineering Handbook. CRC Press. 1993: 2235–2236. ISBN 0-8493-0185-8.
- ^ 8.0 8.1 Evans, D A; McGlynn, A G; Towlson, B M; Gunn, M; Jones, D; Jenkins, T E; Winter, R; Poolton, N R J. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy (PDF). Journal of Physics: Condensed Matter. 2008, 20 (7): 075233 [2024-02-20]. Bibcode:2008JPCM...20g5233E. S2CID 52027854. doi:10.1088/0953-8984/20/7/075233. hdl:2160/612 . (原始内容存档 (PDF)于2023-05-24).
- ^ Boron nitride nanotube. www.matweb.com. [2024-02-20]. (原始内容存档于2024-02-20).
- ^ 10.0 10.1 10.2 10.3 Madelung, O. Semiconductors: Data Handbook. Birkhäuser. 2004: 1 [2024-02-20]. ISBN 978-3-540-40488-0. (原始内容存档于2023-05-16).
- ^ Claus F. Klingshirn. Semiconductor optics. Springer. 1997: 127. ISBN 978-3-540-61687-0.
- ^ Lead(II) sulfide. www.matweb.com.
- ^ Patel, Malkeshkumar; Indrajit Mukhopadhyay; Abhijit Ray. Annealing influence over structural and optical properties of sprayed SnS thin films. Optical Materials. 26 May 2013, 35 (9): 1693–1699. Bibcode:2013OptMa..35.1693P. doi:10.1016/j.optmat.2013.04.034.
- ^ Burton, Lee A.; Whittles, Thomas J.; Hesp, David; Linhart, Wojciech M.; Skelton, Jonathan M.; Hou, Bo; Webster, Richard F.; O'Dowd, Graeme; Reece, Christian; Cherns, David; Fermin, David J.; Veal, Tim D.; Dhanak, Vin R.; Walsh, Aron. Electronic and optical properties of single crystal SnS2: An earth-abundant disulfide photocatalyst. Journal of Materials Chemistry A. 2016, 4 (4): 1312–1318. doi:10.1039/C5TA08214E. hdl:10044/1/41359 .
- ^ Haacke, G.; Castellion, G. A. Preparation and Semiconducting Properties of Cd3P2. Journal of Applied Physics. 1964, 35 (8): 2484–2487. Bibcode:1964JAP....35.2484H. doi:10.1063/1.1702886.
- ^ Kimball, Gregory M.; Müller, Astrid M.; Lewis, Nathan S.; Atwater, Harry A. Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2 (PDF). Applied Physics Letters. 2009, 95 (11): 112103 [2024-02-20]. Bibcode:2009ApPhL..95k2103K. ISSN 0003-6951. doi:10.1063/1.3225151. (原始内容存档 (PDF)于2022-11-22).
- ^ Syrbu, N. N.; Stamov, I. G.; Morozova, V. I.; Kiossev, V. K.; Peev, L. G. Energy band structure of Zn3P2, ZnP2 and CdP2 crystals on wavelength modulated photoconductivity and photoresponnse spectra of Schottky diodes investigation. Proceedings of the First International Symposium on the Physics and Chemistry of II-V Compounds. 1980: 237–242.
- ^ Botha, J. R.; Scriven, G. J.; Engelbrecht, J. A. A.; Leitch, A. W. R. Photoluminescence properties of metalorganic vapor phase epitaxial Zn3As2. Journal of Applied Physics. 1999, 86 (10): 5614–5618. Bibcode:1999JAP....86.5614B. doi:10.1063/1.371569.
- ^ 19.0 19.1 19.2 Rahimi, N.; Pax, R. A.; MacA. Gray, E. Review of functional titanium oxides. I: TiO2 and its modifications. Progress in Solid State Chemistry. 2016, 44 (3): 86–105. doi:10.1016/j.progsolidstchem.2016.07.002.
- ^ O. Madelung; U. Rössler; M. Schulz (编). Cuprous oxide (Cu2O) band structure, band energies. Landolt-Börnstein – Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology. Landolt-Börnstein - Group III Condensed Matter. 41C: Non-Tetrahedrally Bonded Elements and Binary Compounds I. 1998: 1–4. ISBN 978-3-540-64583-2. doi:10.1007/10681727_62.
- ^ Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO 2, V 6 O 13, and V 2 O 3. Physical Review B. 1990, 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. PMID 9994356. doi:10.1103/physrevb.41.4993.
- ^ Sinha, Sapna. Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene. Nature Communications. 2020, 11 (1): 823. Bibcode:2020NatCo..11..823S. PMC 7010709 . PMID 32041958. S2CID 256633781. doi:10.1038/s41467-020-14481-z.
- ^ Kobayashi, K.; Yamauchi, J. Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Physical Review B. 1995, 51 (23): 17085–17095. Bibcode:1995PhRvB..5117085K. PMID 9978722. doi:10.1103/PhysRevB.51.17085.
- ^ Arora, Himani. Charge transport in two-dimensional materials and their electronic applications (PDF). Doctoral Dissertation. 2020 [July 1, 2021]. (原始内容存档 (PDF)于2024-01-05).
- ^ B. G. Yacobi Semiconductor materials: an introduction to basic principles (页面存档备份,存于互联网档案馆) Springer, 2003, ISBN 0-306-47361-5
- ^ Kumar, Manish; Sharma, Anjna; Maurya, Indresh Kumar; Thakur, Alpana; Kumar, Sunil. Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities. Journal of Taibah University for Science. 2019, 13: 280–285 [2024-02-20]. S2CID 139826266. doi:10.1080/16583655.2019.1565437 . (原始内容存档于2023-05-11).
- ^ Synthesis and Characterization of Nano-Dimensional Nickelous Oxide (NiO) Semiconductor S. Chakrabarty and K. Chatterjee
- ^ Synthesis and Room Temperature Magnetic Behavior of Nickel Oxide Nanocrystallites Kwanruthai Wongsaprom*[a] and Santi Maensiri [b]
- ^ Arsenic sulfide (As2S3). [2024-02-20]. (原始内容存档于2018-10-07).
- ^ Temperature Dependence of Spectroscopic Performance of Thallium Bromide X- and Gamma-Ray Detectors. [2024-02-20]. (原始内容存档于2019-06-18).
- ^ HODES; Ebooks Corporation. Chemical Solution Deposition of Semiconductor Films. CRC Press. 8 October 2002: 319– [28 June 2011]. ISBN 978-0-8247-4345-1.
- ^ Arumona Edward Arumona; Amah A N. Density Functional Theory Calculation of Band Gap of Iron (II) disulfide and Tellurium. Advanced Journal of Graduate Research. 2018, 3: 41–46. doi:10.21467/ajgr.3.1.41-46 .
- ^ Prashant K Sarswat; Michael L Free. Enhanced Photoelectrochemical Response from Copper Antimony Zinc Sulfide Thin Films on Transparent Conducting Electrode. International Journal of Photoenergy. 2013, 2013: 1–7. doi:10.1155/2013/154694 .
- ^ Trukhan, V. M.; Izotov, A. D.; Shoukavaya, T. V. Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics. Inorganic Materials. 2014, 50 (9): 868–873. S2CID 94409384. doi:10.1134/S0020168514090143.
- ^ Borisenko, Sergey; et al. Experimental Realization of a Three-Dimensional Dirac Semimetal. Physical Review Letters. 2014, 113 (27603): 027603. Bibcode:2014PhRvL.113b7603B. PMID 25062235. S2CID 19882802. arXiv:1309.7978 . doi:10.1103/PhysRevLett.113.027603.
- ^ Cisowski, J. Level Ordering in II3-V2 Semiconducting Compounds. Physica Status Solidi B. 1982, 111 (1): 289–293. Bibcode:1982PSSBR.111..289C. doi:10.1002/pssb.2221110132.