跳转到内容

半导体材料

本页使用了标题或全文手工转换
维基百科,自由的百科全书

半导体材料是一类固体材料,其导电性介于导体绝缘体之间,属于半导体

发展

[编辑]
  • 1833年,英国的法拉第发现硫化银是半导体材料,因为它的电阻随著温度上升而降低。
  • 1874年,德国的布劳恩注意到硫化物的电导率与所加电压的方向有关,这就是半导体的整流作用。
  • 1947年12月23日,巴丁布拉坦进一步使用点接触电晶体制作出一个语音放大器,电晶体正式发明。
  • 1958年9月12日,美国的基尔比,细心地切了一块作为电阻,再用一块pn接面做为电容,制造出一个震荡器电路。

分类

[编辑]

以原料分为:

列表

[编辑]
半导体材料列表
元素 化学式 能隙 (eV) 直接带隙和间接带隙
IV 1 Si 1.12[1][2] 间接带隙
IV 1 Germanium Ge 0.67[1][2] 间接带隙
IV 1 Material properties of diamond英语Material properties of diamond C 5.47[1][2] 间接带隙
IV 1 , α-Sn Sn 0[3][4] 半金属 (能带理论)
IV 2 碳化硅, 3C-SiC SiC 2.3[1] 间接带隙
IV 2 碳化硅, 4H-SiC SiC 3.3[1] 间接带隙
IV 2 碳化硅, 6H-SiC英语6H-SiC SiC 3.0[1] 间接带隙
VI 1 , 硫的同素异形体 S8 2.6[5]
VI 1 Se 1.83 - 2.0[6] 间接带隙
VI 1 Se 2.05 间接带隙
VI 1 Te 0.33[7]
III-V 2 氮化硼, cubic BN 6.36[8] 间接带隙
III-V 2 氮化硼, hexagonal BN 5.96[8] quasi-direct
III-V 2 氮化硼 BN 5.5[9]
III-V 2 磷化硼 BP 2.1[10] 间接带隙
III-V 2 砷化硼 BAs 1.82 直接带隙
III-V 2 砷化硼 B12As2 3.47 间接带隙
III-V 2 氮化铝 AlN 6.28[1] 直接带隙
III-V 2 磷化铝 AlP 2.45[2] 间接带隙
III-V 2 砷化铝 AlAs 2.16[2] 间接带隙
III-V 2 锑化铝 AlSb 1.6/2.2[2] 直接带隙/direct
III-V 2 氮化镓 GaN 3.44[1][2] 直接带隙
III-V 2 磷化镓 GaP 2.26[1][2] 间接带隙
III-V 2 Gallium arsenide英语Gallium arsenide GaAs 1.42[1][2] 直接带隙
III-V 2 锑化镓 GaSb 0.73[1][2] 直接带隙
III-V 2 氮化铟 InN 0.7[1] 直接带隙
III-V 2 磷化铟 InP 1.35[1] 直接带隙
III-V 2 砷化铟 InAs 0.36[1] 直接带隙
III-V 2 锑化铟 InSb 0.17[1] 直接带隙
II-VI 2 硒化镉 CdSe 1.74[2] 直接带隙
II-VI 2 硫化镉 CdS 2.42[2] 直接带隙
II-VI 2 碲化镉 CdTe 1.49[2] 直接带隙
II-VI 2 氧化锌 ZnO 3.37[2] 直接带隙
II-VI 2 硒化锌 ZnSe 2.7[2] 直接带隙
II-VI 2 硫化锌 ZnS 3.54/3.91[2] 直接带隙
II-VI 2 碲化锌 ZnTe 2.3[2] 直接带隙
I-VII 2 氯化亚铜 CuCl 3.4[11] 直接带隙
I-VI 2 Copper sulfide英语Copper sulfide Cu2S 1.2[10] 间接带隙
IV-VI 2 硒化铅 PbSe 0.26[7] 直接带隙
IV-VI 2 硫化铅 PbS 0.37[12]
IV-VI 2 碲化铅 PbTe 0.32[1]
IV-VI 2 硫化亚锡 SnS 1.3/1.0[13] 直接带隙/间接带隙
IV-VI 2 二硫化锡 SnS2 2.2[14]
IV-VI 2 碲化亚锡 SnTe 0.18
IV-VI 3 Lead tin telluride英语Lead tin telluride Pb1−xSnxTe 0-0.29
V-VI 2 碲化铋 Bi2Te3 0.13[1]
II-V 2 磷化镉 Cd3P2 0.5[15]
II-V 2 砷化镉 Cd3As2 0
II-V 2 磷化锌 Zn3P2 1.5[16] 直接带隙
II-V 2 二磷化锌 ZnP2 2.1[17]
II-V 2 砷化锌 Zn3As2 1.0[18]
II-V 2 锑化锌 Zn3Sb2
2 二氧化钛, 锐钛矿 TiO2 3.20[19] 间接带隙
2 二氧化钛, 金红石 TiO2 3.0[19] 直接带隙
2 二氧化钛, 板钛矿 TiO2 3.26[19]
2 氧化亚铜 Cu2O 2.17[20]
2 氧化铜 CuO 1.2
2 二氧化铀 UO2 1.3
2 二氧化锡 SnO2 3.7
3 钛酸钡 BaTiO3 3
3 钛酸锶 SrTiO3 3.3
3 铌酸锂 LiNbO3 4
V-VI 2 monoclinic 二氧化钒 VO2 0.7[21] 光学带隙
2 碘化铅 PbI2 2.4[22]
2 二硫化钼 MoS2 1.23 eV (2H)[23] 间接带隙
2 Gallium(II) selenide英语Gallium(II) selenide GaSe 2.1 间接带隙
2 硒化铟 InSe 1.26-2.35 eV[24] 直接带隙 (2D间接带隙)
2 硫化亚锡 SnS >1.5 eV 直接带隙
2 硫化铋 Bi2S3 1.3[1]
Magnetic, diluted (DMS)[25] 3 Gallium manganese arsenide英语Gallium manganese arsenide GaMnAs
Magnetic, diluted (DMS) 3 Lead manganese telluride PbMnTe
4 Lanthanum calcium manganate La0.7Ca0.3MnO3
2 氧化亚铁 FeO 2.2 [26]
2 一氧化镍 NiO 3.6–4.0 直接带隙[27][28]
2 Europium(II) oxide英语Europium(II) oxide EuO
2 硫化亚铕 EuS
2 溴化铬 CrBr3
其它 3 Copper indium selenide英语Copper indium selenide, CIS CuInSe2 1 直接带隙
其它 3 Silver gallium sulfide AgGaS2
其它 3 Zinc silicon phosphide ZnSiP2 2.0[10]
其它 2 三硫化二砷 雌黄 As2S3 2.7[29] 直接带隙
其它 2 硫化砷 雄黄 As4S4
其它 2 Platinum silicide英语Platinum silicide PtSi
其它 2 碘化铋 BiI3
其它 2 碘化汞 HgI2
其它 2 溴化亚铊 TlBr 2.68[30]
其它 2 硫化银 Ag2S 0.9[31]
其它 2 Iron disulfide英语Iron disulfide FeS2 0.95[32]
其它 4 Copper zinc tin sulfide英语Copper zinc tin sulfide, CZTS Cu2ZnSnS4 1.49 直接带隙
其它 4 Copper zinc antimony sulfide英语Copper zinc antimony sulfide, CZAS Cu1.18Zn0.40Sb1.90S7.2 2.2[33] 直接带隙
其它 3 Copper tin sulfide, CTS Cu2SnS3 0.91[10] 直接带隙

合金表

[编辑]
半导体材料合金列表
元素 材料 化学式 能隙 (eV) 直接带隙和间接带隙
IV-VI 3 Lead tin telluride英语Lead tin telluride Pb1−xSnxTe 0 0.29
IV 2 矽锗 Si1−xGex 0.67 1.11[1] 直接带隙/间接带隙
IV 2 Silicon-tin英语Silicon-tin Si1−xSnx 1.0 1.11 间接带隙
III-V 3 Aluminium gallium arsenide英语Aluminium gallium arsenide AlxGa1−xAs 1.42 2.16[1] 直接带隙/间接带隙
III-V 3 Indium gallium arsenide英语Indium gallium arsenide InxGa1−xAs 0.36 1.43 直接带隙
III-V 3 磷化铟镓 InxGa1−xP 1.35 2.26 直接带隙/间接带隙
III-V 3 Aluminium indium arsenide英语Aluminium indium arsenide AlxIn1−xAs 0.36 2.16 直接带隙/间接带隙
III-V 3 Aluminium gallium antimonide英语Aluminium gallium antimonide AlxGa1−xSb 0.7 1.61 直接带隙/间接带隙
III-V 3 Aluminium indium antimonide英语Aluminium indium antimonide AlxIn1−xSb 0.17 1.61 直接带隙/间接带隙
III-V 3 Gallium arsenide nitride GaAsN
III-V 3 Gallium arsenide phosphide英语Gallium arsenide phosphide GaAsP 1.43 2.26 直接带隙/间接带隙
III-V 3 Aluminium arsenide antimonide英语Aluminium arsenide antimonide AlAsSb 1.61 2.16 间接带隙
III-V 3 Gallium arsenide antimonide英语Gallium arsenide antimonide GaAsSb 0.7 1.42[1] 直接带隙
III-V 3 Aluminium gallium nitride英语Aluminium gallium nitride AlGaN 3.44 6.28 直接带隙
III-V 3 Aluminium gallium phosphide英语Aluminium gallium phosphide AlGaP 2.26 2.45 间接带隙
III-V 3 Indium gallium nitride英语Indium gallium nitride InGaN 2 3.4 直接带隙
III-V 3 Indium arsenide antimonide英语Indium arsenide antimonide InAsSb 0.17 0.36 直接带隙
III-V 3 Indium gallium antimonide英语Indium gallium antimonide InGaSb 0.17 0.7 直接带隙
III-V 4 Aluminium gallium indium phosphide英语Aluminium gallium indium phosphide AlGaInP 直接带隙/间接带隙
III-V 4 Aluminium gallium arsenide phosphide AlGaAsP
III-V 4 Indium gallium arsenide phosphide英语Indium gallium arsenide phosphide InGaAsP
III-V 4 Indium gallium arsenide antimonide英语Indium gallium arsenide antimonide InGaAsSb
III-V 4 Indium arsenide antimonide phosphide英语Indium arsenide antimonide phosphide InAsSbP
III-V 4 Aluminium indium arsenide phosphide AlInAsP
III-V 4 Aluminium gallium arsenide nitride AlGaAsN
III-V 4 Indium gallium arsenide nitride InGaAsN
III-V 4 Indium aluminium arsenide nitride InAlAsN
III-V 4 Gallium arsenide antimonide nitride GaAsSbN
III-V 5 Gallium indium nitride arsenide antimonide GaInNAsSb
III-V 5 Gallium indium arsenide antimonide phosphide英语Gallium indium arsenide antimonide phosphide GaInAsSbP
II-VI 3 碲化锌镉, CZT CdZnTe 1.4 2.2 直接带隙
II-VI 3 Mercury cadmium telluride英语Mercury cadmium telluride HgCdTe 0 1.5
II-VI 3 Mercury zinc telluride英语Mercury zinc telluride HgZnTe 0 2.25
II-VI 3 Mercury zinc selenide HgZnSe
II-V 4 Zinc cadmium phosphide arsenide英语Zinc cadmium phosphide arsenide (Zn1−xCdx)3(P1−yAsy)2[34] 0[35] 1.5[36]
其它 4 Copper indium gallium selenide英语Copper indium gallium selenide, CIGS Cu(In,Ga)Se2 1 1.7 直接带隙

参见

[编辑]

参考文献

[编辑]
  1. ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 NSM Archive - Physical Properties of Semiconductors. www.ioffe.ru. [2010-07-10]. (原始内容存档于2015-09-28). 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 Safa O. Kasap; Peter Capper. Springer handbook of electronic and photonic materials. Springer. 2006: 54,327. ISBN 978-0-387-26059-4. 
  3. ^ S.H. Groves, C.R. Pidgeon, A.W. Ewald, R.J. Wagner Journal of Physics and Chemistry of Solids, Volume 31, Issue 9, September 1970, Pages 2031-2049 (1970). Interband magnetoreflection of α-Sn.
  4. ^ Tin, Sn. www.matweb.com. [2024-02-20]. (原始内容存档于2017-12-01). 
  5. ^ Abass, A. K.; Ahmad, N. H. Indirect band gap investigation of orthorhombic single crystals of sulfur. Journal of Physics and Chemistry of Solids. 1986, 47 (2): 143. Bibcode:1986JPCS...47..143A. doi:10.1016/0022-3697(86)90123-X. 
  6. ^ Todorov, T. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material. Nature Communications. 2017, 8 (1): 682. Bibcode:2017NatCo...8..682T. PMC 5613033可免费查阅. PMID 28947765. S2CID 256640449. doi:10.1038/s41467-017-00582-9. 
  7. ^ 7.0 7.1 Dorf, Richard. The Electrical Engineering Handbook. CRC Press. 1993: 2235–2236. ISBN 0-8493-0185-8. 
  8. ^ 8.0 8.1 Evans, D A; McGlynn, A G; Towlson, B M; Gunn, M; Jones, D; Jenkins, T E; Winter, R; Poolton, N R J. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy (PDF). Journal of Physics: Condensed Matter. 2008, 20 (7): 075233 [2024-02-20]. Bibcode:2008JPCM...20g5233E. S2CID 52027854. doi:10.1088/0953-8984/20/7/075233. hdl:2160/612可免费查阅. (原始内容存档 (PDF)于2023-05-24). 
  9. ^ Boron nitride nanotube. www.matweb.com. [2024-02-20]. (原始内容存档于2024-02-20). 
  10. ^ 10.0 10.1 10.2 10.3 Madelung, O. Semiconductors: Data Handbook. Birkhäuser. 2004: 1 [2024-02-20]. ISBN 978-3-540-40488-0. (原始内容存档于2023-05-16). 
  11. ^ Claus F. Klingshirn. Semiconductor optics. Springer. 1997: 127. ISBN 978-3-540-61687-0. 
  12. ^ Lead(II) sulfide. www.matweb.com. 
  13. ^ Patel, Malkeshkumar; Indrajit Mukhopadhyay; Abhijit Ray. Annealing influence over structural and optical properties of sprayed SnS thin films. Optical Materials. 26 May 2013, 35 (9): 1693–1699. Bibcode:2013OptMa..35.1693P. doi:10.1016/j.optmat.2013.04.034. 
  14. ^ Burton, Lee A.; Whittles, Thomas J.; Hesp, David; Linhart, Wojciech M.; Skelton, Jonathan M.; Hou, Bo; Webster, Richard F.; O'Dowd, Graeme; Reece, Christian; Cherns, David; Fermin, David J.; Veal, Tim D.; Dhanak, Vin R.; Walsh, Aron. Electronic and optical properties of single crystal SnS2: An earth-abundant disulfide photocatalyst. Journal of Materials Chemistry A. 2016, 4 (4): 1312–1318. doi:10.1039/C5TA08214E. hdl:10044/1/41359可免费查阅. 
  15. ^ Haacke, G.; Castellion, G. A. Preparation and Semiconducting Properties of Cd3P2. Journal of Applied Physics. 1964, 35 (8): 2484–2487. Bibcode:1964JAP....35.2484H. doi:10.1063/1.1702886. 
  16. ^ Kimball, Gregory M.; Müller, Astrid M.; Lewis, Nathan S.; Atwater, Harry A. Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2 (PDF). Applied Physics Letters. 2009, 95 (11): 112103 [2024-02-20]. Bibcode:2009ApPhL..95k2103K. ISSN 0003-6951. doi:10.1063/1.3225151. (原始内容存档 (PDF)于2022-11-22). 
  17. ^ Syrbu, N. N.; Stamov, I. G.; Morozova, V. I.; Kiossev, V. K.; Peev, L. G. Energy band structure of Zn3P2, ZnP2 and CdP2 crystals on wavelength modulated photoconductivity and photoresponnse spectra of Schottky diodes investigation. Proceedings of the First International Symposium on the Physics and Chemistry of II-V Compounds. 1980: 237–242. 
  18. ^ Botha, J. R.; Scriven, G. J.; Engelbrecht, J. A. A.; Leitch, A. W. R. Photoluminescence properties of metalorganic vapor phase epitaxial Zn3As2. Journal of Applied Physics. 1999, 86 (10): 5614–5618. Bibcode:1999JAP....86.5614B. doi:10.1063/1.371569. 
  19. ^ 19.0 19.1 19.2 Rahimi, N.; Pax, R. A.; MacA. Gray, E. Review of functional titanium oxides. I: TiO2 and its modifications. Progress in Solid State Chemistry. 2016, 44 (3): 86–105. doi:10.1016/j.progsolidstchem.2016.07.002. 
  20. ^ O. Madelung; U. Rössler; M. Schulz (编). Cuprous oxide (Cu2O) band structure, band energies. Landolt-Börnstein – Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology. Landolt-Börnstein - Group III Condensed Matter. 41C: Non-Tetrahedrally Bonded Elements and Binary Compounds I. 1998: 1–4. ISBN 978-3-540-64583-2. doi:10.1007/10681727_62. 
  21. ^ Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO 2, V 6 O 13, and V 2 O 3. Physical Review B. 1990, 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. PMID 9994356. doi:10.1103/physrevb.41.4993. 
  22. ^ Sinha, Sapna. Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene. Nature Communications. 2020, 11 (1): 823. Bibcode:2020NatCo..11..823S. PMC 7010709可免费查阅. PMID 32041958. S2CID 256633781. doi:10.1038/s41467-020-14481-z. 
  23. ^ Kobayashi, K.; Yamauchi, J. Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Physical Review B. 1995, 51 (23): 17085–17095. Bibcode:1995PhRvB..5117085K. PMID 9978722. doi:10.1103/PhysRevB.51.17085. 
  24. ^ Arora, Himani. Charge transport in two-dimensional materials and their electronic applications (PDF). Doctoral Dissertation. 2020 [July 1, 2021]. (原始内容存档 (PDF)于2024-01-05). 
  25. ^ B. G. Yacobi Semiconductor materials: an introduction to basic principles页面存档备份,存于互联网档案馆) Springer, 2003, ISBN 0-306-47361-5
  26. ^ Kumar, Manish; Sharma, Anjna; Maurya, Indresh Kumar; Thakur, Alpana; Kumar, Sunil. Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities. Journal of Taibah University for Science. 2019, 13: 280–285 [2024-02-20]. S2CID 139826266. doi:10.1080/16583655.2019.1565437可免费查阅. (原始内容存档于2023-05-11). 
  27. ^ Synthesis and Characterization of Nano-Dimensional Nickelous Oxide (NiO) Semiconductor S. Chakrabarty and K. Chatterjee
  28. ^ Synthesis and Room Temperature Magnetic Behavior of Nickel Oxide Nanocrystallites Kwanruthai Wongsaprom*[a] and Santi Maensiri [b]
  29. ^ Arsenic sulfide (As2S3). [2024-02-20]. (原始内容存档于2018-10-07). 
  30. ^ Temperature Dependence of Spectroscopic Performance of Thallium Bromide X- and Gamma-Ray Detectors. [2024-02-20]. (原始内容存档于2019-06-18). 
  31. ^ HODES; Ebooks Corporation. Chemical Solution Deposition of Semiconductor Films. CRC Press. 8 October 2002: 319– [28 June 2011]. ISBN 978-0-8247-4345-1. 
  32. ^ Arumona Edward Arumona; Amah A N. Density Functional Theory Calculation of Band Gap of Iron (II) disulfide and Tellurium. Advanced Journal of Graduate Research. 2018, 3: 41–46. doi:10.21467/ajgr.3.1.41-46可免费查阅. 
  33. ^ Prashant K Sarswat; Michael L Free. Enhanced Photoelectrochemical Response from Copper Antimony Zinc Sulfide Thin Films on Transparent Conducting Electrode. International Journal of Photoenergy. 2013, 2013: 1–7. doi:10.1155/2013/154694可免费查阅. 
  34. ^ Trukhan, V. M.; Izotov, A. D.; Shoukavaya, T. V. Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics. Inorganic Materials. 2014, 50 (9): 868–873. S2CID 94409384. doi:10.1134/S0020168514090143. 
  35. ^ Borisenko, Sergey; et al. Experimental Realization of a Three-Dimensional Dirac Semimetal. Physical Review Letters. 2014, 113 (27603): 027603. Bibcode:2014PhRvL.113b7603B. PMID 25062235. S2CID 19882802. arXiv:1309.7978可免费查阅. doi:10.1103/PhysRevLett.113.027603. 
  36. ^ Cisowski, J. Level Ordering in II3-V2 Semiconducting Compounds. Physica Status Solidi B. 1982, 111 (1): 289–293. Bibcode:1982PSSBR.111..289C. doi:10.1002/pssb.2221110132.