Smarandache–Wellin素數
外观
(重定向自司馬仁達齊握冷素數)
在數學中,Smarandache–Wellin素數是將前n個質數照順序寫在一起組成的新數(Smarandache–Wellin数)且本身也是質數的數。前三個Smarandache–Wellin素數為:2, 23和2357(A069151)。第四個Smarandache–Wellin素數有355位數,其結尾質數是719。[1]
組成各個Smarandache–Wellin素數的結尾質數是:
- 2, 3, 7, 719, 1033, 2297, 3037, 11927?, ...(A046284)
在Smarandache–Wellin数中,是Smarandache–Wellin素數的數序如下:
- 1, 2, 4, 128, 174, 342, 435, 1429?, ...(A046035)
第1429個Smarandache–Wellin数是可能質數(有可能是偽質數),它有5719位數,結尾質數是11927,是埃里克·韋斯坦因於1998年發現的[2],如果它被證明是質數,這將是第8個Smarandache–Wellin素數。2006年7月韋斯坦因的搜索表明該Smarandache–Wellin素數(如果存在)可能大於第18272個Smarandache–Wellin素數。[3]
參考文獻
[编辑]- ^ Pomerance, Carl B.; Crandall, Richard E. Prime Numbers: a computational perspective. Springer. 2001: 78 Ex 1.86. ISBN 0387252827.
- ^ Rivera, Carlos, Primes by Listing (页面存档备份,存于互联网档案馆)
- ^ Weisstein, Eric W. (编). Integer Sequence Primes. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
參見
[编辑]这是一篇關於數的小作品。您可以通过编辑或修订扩充其内容。 |