跳至內容

梭羅模型

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

梭羅-史旺模型(Solow–Swan model),又稱梭羅成長模型Solow growth model)、新古典經濟成長模型外生經濟成長模型(exogenous growth model),在新古典經濟學框架內提出的著名經濟成長模型。羅伯特·梭羅崔佛·斯旺英語Trevor Swan在1956年各自提出經濟成長模型。主要用於解釋固定資本增加,對GDP所產生的影響。

模型假設和變數

[編輯]

模型假設

[編輯]
  1. 該模型假設儲蓄全部轉化為投資,即儲蓄-投資轉化率假設為1;
  2. 該模型假設投資邊際收益率遞減,即投資規模收益是常數;
  3. 該模型修正了哈羅德-多馬模型的生產技術假設,採用了資本勞動可替代的新古典科布-道格拉斯生產函數,從而解決了哈羅德-多馬模型中經濟成長率與人口成長率不能自發相等的問題。

因為在科布-道格拉斯生產函數中,勞動數量既定,隨資本存量的增加,資本的邊際收益遞減規律確保經濟成長穩定在一個特定值上。該模型沒有投資的預期,因此迴避了有保證的經濟成長率與實際經濟成長率之間的不穩定,就此可得出結論:經濟穩定成長。

模型變數

[編輯]
  • 外生變數:人口成長率、技術進步率
  • 內生變數:產出成長率、資本成長率

以上變數針對Solow Growth Model,也即圖中的y=f(k)線。 具體可參考:http://www.econ.yale.edu/smith/econ116a/lecture3b.pdf頁面存檔備份,存於網際網路檔案館

  • 在求穩態時,由於需要考慮dk/k=s(y/k)-sẟ-n=0, 外生變數還應有:資本折舊率、儲蓄率

模型的數學表達

[編輯]

總體生產函數: (E是內生化之後的A,E*L代表的是效率工人)

人均生產函數的推導:

在穩態,人均投資(由儲蓄轉化而來)等於投資的折舊、廣化和深化:

其中,K——資本;L——勞動;A——技術發展水準;I——毛投資;S——儲蓄;k——有效勞動投入之上的資本密度;s——邊際儲蓄率;n——人口成長率;g——技術進步率;——資本折舊率;y——有效勞動投入之上的人均產出

模型結論

[編輯]

經濟成長的路徑是穩定的。在長期,只有技術進步是成長的來源。

對該模型的批評評論

[編輯]
  • 儲蓄率不是常數,決定儲蓄率和相應的投資取決於經濟個體的決策,即家庭和廠商效用極大化的權衡。