跳至內容

林登鮑姆-塔斯基代數

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

數理邏輯中,邏輯理論T林登鮑姆-塔斯基代數(Lindenbaum–Tarski algebra)A由這個理論的句子p等價類構成(其中等價關係~定義為:p ~ q若且唯若pq在理論T中邏輯等價的時候,也即在理論T中,句子pq能互相推出對方)。

A中的運算繼承自T中能獲得的那些運算,典型的是合取析取,在這裡它們在這些類上是良定的。當T中存在否定的時候,A布林代數,假定邏輯是經典邏輯。反或來說,對於所有布林代數A,有(經典)句子邏輯的一個理論T使得T的林登鮑姆-塔斯基代數同構A。換句話說,所有布林代數都是(不別同構之異)林登鮑姆-塔斯基代數。

直覺邏輯的情況下,林登鮑姆-塔斯基代數是海廷代數

有時簡稱為林登鮑姆代數,這個構造得名於阿道夫·林登鮑姆(1904年-1941或1942年)和阿爾弗雷德·塔斯基

參照

[編輯]