特征缩放
外观
特征缩放是用来统一资料中的自变项或特征范围的方法,在资料处理中,通常会被使用在资料前处理这个步骤。
动机
[编辑]因为在原始的资料中,各变数的范围大不相同。对于某些机器学习的算法,若没有做过标准化,目标函数会无法适当的运作。举例来说,多数的分类器利用两点间的距离计算两点的差异,若其中一 个特征具有非常广的范围,那两点间的差异就会被该特征左右,因此,所有的特征都该被标准化,这样才能大略的使各特征依比例影响距离。
另外一个做特征缩放的理由是他能使加速梯度下降法的收敛。
方法
[编辑]重新缩放
[编辑]最简单的方式是重新缩放特征的范围到[0, 1]或[-1, 1], 依据原始的资料选择目标范围,通式如下:
是原始的值,是被标准化后的值。例如,假设我们有学生的体重资料,范围落在[160磅, 200磅],为了重新缩放这个资料,我们会先将每个学生的体重减掉160,接着除与40(最大体重与最小体重的差值)
标准化
[编辑]在机器学习中,我们可能要处理不同种类的资料,例如,音讯和图片上的像素值,这些资料可能是高维度的,资料标准化后会使每个特征中的数值平均变为0(将每个特征的值都减掉原始资料中该特征的平均)、标准差变为1,这个方法被广泛的使用在许多机器学习算法中(例如:支持向量机、逻辑斯谛回归和类神经网络)。
缩放至单位长度
[编辑]该方法也在机器学习中常用。缩放特征向量的分量,将每个分量除以向量的欧几里得距离,使整个向量的长度为1。
应用
[编辑]在随机梯度下降法中, 特征缩放有时能加速其收敛速度。而在支持向量机中,他可以使其花费更少时间找到支持向量,特征缩放会改变支持向量机的结果。
参考
[编辑]- S. Aksoy and R. Haralick, “Feature normalization and likelihood-based similarity measures for image retrieval,” Pattern Recognit. Lett., Special Issue on Image and Video Retrieval, 2000 http://www.cs.bilkent.edu.tr/~saksoy/papers/prletters01_likelihood.pdf (页面存档备份,存于互联网档案馆)
- S. Tsakalidis, V. Doumpiotis & W. Byrne, “Discriminative Linear Transforms for Feature Normalization and Speaker Adaptation in HMM Estimation”, Proc. ICSLP'02, Denver. http://malach.umiacs.umd.edu/pubs/VD_05_Discrim_linear.pdf (页面存档备份,存于互联网档案馆)
- Liefeng Bo, Ling Wang, and Licheng Jiao, “Feature Scaling for Kernel Fisher Discriminant Analysis Using Leave-one-out Cross Validation”, Neural Computation (NECO), vol. 18(4), pp. 961–978, 2006 http://www.cs.washington.edu/homes/lfb/paper/nc06.pdf (页面存档备份,存于互联网档案馆)
- A. Stolcke, S. Kajarekar, and L. Ferrer, “Nonparametric feature normalization for SVM-based speaker verification,” in Proc. ICASSP, Las Vegas, Apr. 2008. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4517925
- E. Youn, M. K. Jeong, “Class dependent feature scaling method using naive Bayes classifier for text datamining” Pattern Recognition Letters, 2009. http://www.sciencedirect.com/science/article/pii/S0167865508003553 (页面存档备份,存于互联网档案馆)
- S. Theodoridis, K. Koutroumbas. (2008) “Pattern Recognition”, Academic Press, 4 edition, ISBN 978-1-59749-272-0