ACVR1B
外觀
1B型活化素受體(Activin receptor type-1B),縮寫為ACVR1B或ALK-4,在人體中是一種由ACVR1B基因編碼的蛋白質[5][6]。
ALK-4能夠對活化素或活化素樣配體(即抑制素)的信號進行轉導。活化素首先與ACVR2A或ACVR2B結合,之後再與ALK-4形成複合物。上述過程能夠招募R-SMAD、SMAD2或者SMAD3分子[7]。ALK-4也可以轉導NODAL、GDF-1、Vg1的信號。但是,和活化素不同,這些分子(與ALK-4的結合)需要Cripto蛋白等共受體[8]。
功能
[編輯]活化素是一類二聚體生長分化因子,屬於TGF-β蛋白質超家族,一類結構上相關的信號蛋白。活化素信號能夠通過一個包含至少兩分子1型以及兩分子2型受體的受體絲氨酸激酶異聚複合體進行轉導。這些受體都屬於跨膜蛋白,包含一個含有豐富半胱氨酸區域的細胞外配體結合結構域,一個跨膜結構域,以及一個推測具有絲氨酸或蘇氨酸專一性的細胞內(即細胞質中的)(激酶)結構域。1型受體對信號轉導來說是必要的,2型受體則對1型受體的表達以及配體的結合來說不可或缺。在配體結合後,1型受體以及2型受體能夠形成一個穩定的複合物,並使1型受體被2型受體磷酸化[6]。
基因結構與表達
[編輯]編碼ALK-4基因含有11個外含子。可變剪接以及Poly(A)(多聚腺嘌呤)尾巴的變化使該基因擁有多個轉錄本,目前已有3個轉錄本得到闡明,另外,此基因可能存在第四個包含8號外顯子,且8號外顯子與11號外顯子缺乏9號外顯子的轉錄本,但是這種轉錄本對應的mRNA還沒有得到確認[6]。
相互作用
[編輯]ALK能與ACVR2A、ACVR2B發生相互作用[9][10][11]。
參考
[編輯]- ^ 1.0 1.1 1.2 GRCh38: Ensembl release 89: ENSG00000135503 - Ensembl, May 2017
- ^ 2.0 2.1 2.2 GRCm38: Ensembl release 89: ENSMUSG00000000532 - Ensembl, May 2017
- ^ Human PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Mouse PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ ten Dijke P, Ichijo H, Franzén P, Schulz P, Saras J, Toyoshima H, Heldin CH, Miyazono K. Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene. October 1993, 8 (10): 2879–87. PMID 8397373.
- ^ 6.0 6.1 6.2 Entrez Gene: ACVR1B activin A receptor, type IB. (原始內容存檔於2019-09-18).
- ^ Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 2002, 62 (1): 65–74. PMID 12065756. doi:10.1124/mol.62.1.65.
- ^ Harrison CA, Gray PC, Koerber SC, Fischer W, Vale W. Identification of a functional binding site for activin on the type I receptor ALK4. J. Biol. Chem. 2003, 278 (23): 21129–35. PMID 12665502. doi:10.1074/jbc.M302015200.
- ^ Lebrun JJ, Takabe K, Chen Y, Vale W. Roles of pathway-specific and inhibitory Smads in activin receptor signaling. Mol. Endocrinol. January 1999, 13 (1): 15–23. PMID 9892009. doi:10.1210/mend.13.1.0218.
- ^ Attisano L, Wrana JL, Montalvo E, Massagué J. Activation of signalling by the activin receptor complex. Mol. Cell. Biol. March 1996, 16 (3): 1066–73. PMC 231089 . PMID 8622651.
- ^ De Winter JP, De Vries CJ, Van Achterberg TA, Ameerun RF, Feijen A, Sugino H, De Waele P, Huylebroeck D, Verschueren K, Van Den Eijden-Van Raaij AJ. Truncated activin type II receptors inhibit bioactivity by the formation of heteromeric complexes with activin type I. receptors. Exp. Cell Res. May 1996, 224 (2): 323–34. PMID 8612709. doi:10.1006/excr.1996.0142.
拓展閱讀
[編輯]- Welt CK. The physiology and pathophysiology of inhibin, activin and follistatin in female reproduction. Curr. Opin. Obstet. Gynecol. 2002, 14 (3): 317–23. PMID 12032389. doi:10.1097/00001703-200206000-00012.
- Liu F, Ventura F, Doody J, Massagué J. Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol. Cell. Biol. 1995, 15 (7): 3479–86. PMC 230584 . PMID 7791754. doi:10.1128/mcb.15.7.3479.
- Xu J, Matsuzaki K, McKeehan K, Wang F, Kan M, McKeehan WL. Genomic structure and cloned cDNAs predict that four variants in the kinase domain of serine/threonine kinase receptors arise by alternative splicing and poly(A) addition. Proc. Natl. Acad. Sci. U.S.A. 1994, 91 (17): 7957–61. PMC 44523 . PMID 8058741. doi:10.1073/pnas.91.17.7957.
- Cárcamo J, Weis FM, Ventura F, Wieser R, Wrana JL, Attisano L, Massagué J. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol. Cell. Biol. 1994, 14 (6): 3810–21. PMC 358748 . PMID 8196624.
- De Winter JP, De Vries CJ, Van Achterberg TA, Ameerun RF, Feijen A, Sugino H, De Waele P, Huylebroeck D, Verschueren K, Van Den Eijden-Van Raaij AJ. Truncated activin type II receptors inhibit bioactivity by the formation of heteromeric complexes with activin type I. receptors. Exp. Cell Res. 1996, 224 (2): 323–34. PMID 8612709. doi:10.1006/excr.1996.0142.
- Attisano L, Wrana JL, Montalvo E, Massagué J. Activation of signalling by the activin receptor complex. Mol. Cell. Biol. 1996, 16 (3): 1066–73. PMC 231089 . PMID 8622651.
- Lebrun JJ, Vale WW. Activin and inhibin have antagonistic effects on ligand-dependent heteromerization of the type I and type II activin receptors and human erythroid differentiation. Mol. Cell. Biol. 1997, 17 (3): 1682–91. PMC 231893 . PMID 9032295.
- Röijer E, Miyazono K, Aström AK, Geurts van Kessel A, ten Dijke P, Stenman G. Chromosomal localization of three human genes encoding members of the TGF-beta superfamily of type I serine/threonine kinase receptors. Mamm. Genome. 1998, 9 (3): 266–8. PMID 9501322. doi:10.1007/s003359900745.
- Souchelnytskyi S, Nakayama T, Nakao A, Morén A, Heldin CH, Christian JL, ten Dijke P. Physical and functional interaction of murine and Xenopus Smad7 with bone morphogenetic protein receptors and transforming growth factor-beta receptors. J. Biol. Chem. 1998, 273 (39): 25364–70. PMID 9738003. doi:10.1074/jbc.273.39.25364.
- Hashimoto O, Yamato K, Koseki T, Ohguchi M, Ishisaki A, Shoji H, Nakamura T, Hayashi Y, Sugino H, Nishihara T. The role of activin type I receptors in activin A-induced growth arrest and apoptosis in mouse B-cell hybridoma cells. Cell. Signal. 1998, 10 (10): 743–9. PMID 9884026. doi:10.1016/S0898-6568(98)00021-7.
- Lebrun JJ, Takabe K, Chen Y, Vale W. Roles of pathway-specific and inhibitory Smads in activin receptor signaling. Mol. Endocrinol. 1999, 13 (1): 15–23. PMID 9892009. doi:10.1210/mend.13.1.0218.
- Gray PC, Greenwald J, Blount AL, Kunitake KS, Donaldson CJ, Choe S, Vale W. Identification of a binding site on the type II activin receptor for activin and inhibin. J. Biol. Chem. 2000, 275 (5): 3206–12. PMID 10652306. doi:10.1074/jbc.275.5.3206.
- Zhou Y, Sun H, Danila DC, Johnson SR, Sigai DP, Zhang X, Klibanski A. Truncated activin type I receptor Alk4 isoforms are dominant negative receptors inhibiting activin signaling. Mol. Endocrinol. 2000, 14 (12): 2066–75. PMID 11117535. doi:10.1210/me.14.12.2066.
- Su GH, Bansal R, Murphy KM, Montgomery E, Yeo CJ, Hruban RH, Kern SE. ACVR1B (ALK4, activin receptor type 1B) gene mutations in pancreatic carcinoma. Proc. Natl. Acad. Sci. U.S.A. 2001, 98 (6): 3254–7. PMC 30640 . PMID 11248065. doi:10.1073/pnas.051484398.
- Chapman SC, Woodruff TK. Modulation of activin signal transduction by inhibin B and inhibin-binding protein (INhBP). Mol. Endocrinol. 2001, 15 (4): 668–79. PMID 11266516. doi:10.1210/me.15.4.668.
- Wurthner JU, Frank DB, Felici A, Green HM, Cao Z, Schneider MD, McNally JG, Lechleider RJ, Roberts AB. Transforming growth factor-beta receptor-associated protein 1 is a Smad4 chaperone. J. Biol. Chem. 2001, 276 (22): 19495–502. PMID 11278302. doi:10.1074/jbc.M006473200.
- Parks WT, Frank DB, Huff C, Renfrew Haft C, Martin J, Meng X, de Caestecker MP, McNally JG, Reddi A, Taylor SI, Roberts AB, Wang T, Lechleider RJ. Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-beta family of receptor serine-threonine kinases. J. Biol. Chem. 2001, 276 (22): 19332–9. PMID 11279102. doi:10.1074/jbc.M100606200.
- Birkey Reffey S, Wurthner JU, Parks WT, Roberts AB, Duckett CS. X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-beta signaling. J. Biol. Chem. 2001, 276 (28): 26542–9. PMID 11356828. doi:10.1074/jbc.M100331200.
- Bianco C, Adkins HB, Wechselberger C, Seno M, Normanno N, De Luca A, Sun Y, Khan N, Kenney N, Ebert A, Williams KP, Sanicola M, Salomon DS. Cripto-1 activates nodal- and ALK4-dependent and -independent signaling pathways in mammary epithelial Cells. Mol. Cell. Biol. 2002, 22 (8): 2586–97. PMC 133714 . PMID 11909953. doi:10.1128/MCB.22.8.2586-2597.2002.