跳至內容

擾動函數

維基百科,自由的百科全書

最優化領域中,擾動函數(perturbation function)是與主問題和對偶問題相關的任何函數。由於任何此類函數都定義了對初始問題的擾動,所以叫做擾動函數。很多時候這種擾動的形式是約束的調整(shift)。[1]

有時值函數(value function)也被稱作擾動函數,而擾動函數則稱作雙函數(bifunction)。[2]

定義

[編輯]

給定豪斯多夫局部凸空間的兩個對偶對,以及函數,可以定義主問題為

可令以將約束嵌入f,其中I示性函數。則是擾動函數,若且唯若[1][3]

在對偶性中的應用

[編輯]

對偶間隙是不等式右式與左式之差

其中是兩個變量的凸共軛[3][4]

對擾動函數F的任意選擇,弱對偶都成立。有一些條件一旦滿足,就意味着強對偶[3]例如,若F下半連續真聯合凸函數,且(其中代數內部是由定義的到Y的投影),並且XY弗雷歇空間,則強對偶性成立。[1]

例子

[編輯]

拉格朗日量

[編輯]

對偶(為對偶對)。給定主問題(最小化)與相關的擾動函數(),則拉格朗日量F關於y的負共軛(即凸共軛),也就是說拉格朗日量的定義是

特別地,弱對偶minmax方程可以證明為

若主問題是

其中。則若擾動是

則擾動函數是

於是,可見與拉格朗日對偶的聯繫,因為L可以簡單地看成是

芬切爾對偶性

[編輯]

對偶。假定存在線性映射伴隨算子。假定主目標函數(通過示性函數,包含了約束)可以寫作使得,則擾動函數為

特別地,若主目標函數是,則擾動函數來自,這是芬切爾對偶性的傳統定義。[5]

參考文獻

[編輯]
  1. ^ 1.0 1.1 1.2 Radu Ioan Boţ; Gert Wanka; Sorin-Mihai Grad. Duality in Vector Optimization. Springer. 2009. ISBN 978-3-642-02885-4. 
  2. ^ J. P. Ponstein. Approaches to the Theory of Optimization. Cambridge University Press. 2004. ISBN 978-0-521-60491-8. 
  3. ^ 3.0 3.1 3.2 Zălinescu, C. Convex analysis in general vector spaces. River Edge, NJ: World Scientific Publishing  Co., Inc. 2002: 106–113. ISBN 981-238-067-1. MR 1921556. 
  4. ^ Ernö Robert Csetnek. Overcoming the failure of the classical generalized interior-point regularity conditions in convex optimization. Applications of the duality theory to enlargements of maximal monotone operators. Logos Verlag Berlin GmbH. 2010. ISBN 978-3-8325-2503-3. 
  5. ^ Radu Ioan Boţ. Conjugate Duality in Convex Optimization. Springer. 2010: 68. ISBN 978-3-642-04899-9.