KdV-Burgers 也称Burgers-KdV方程 是一个非线性偏微分方程:[ 1] [ 2]
u
t
+
u
∗
u
x
−
α
∗
u
x
x
−
β
∗
u
x
x
x
=
0
{\displaystyle u_{t}+u*u_{x}-\alpha *u_{xx}-\beta *u_{xxx}=0}
u
(
x
,
t
)
=
(
1
/
25
)
∗
(
−
3
+
250
∗
β
2
∗
C
3
)
/
β
+
(
6
/
25
)
∗
c
o
t
h
(
C
1
−
(
1
/
10
)
∗
x
/
β
+
C
3
∗
t
)
/
β
+
(
3
/
25
)
∗
c
o
t
h
(
C
1
−
(
1
/
10
)
∗
x
/
β
+
C
3
∗
t
)
2
/
β
{\displaystyle u(x,t)=(1/25)*(-3+250*\beta ^{2}*_{C}3)/\beta +(6/25)*coth(_{C}1-(1/10)*x/\beta +_{C}3*t)/\beta +(3/25)*coth(_{C}1-(1/10)*x/\beta +_{C}3*t)^{2}/\beta }
u
(
x
,
t
)
=
(
1
/
25
)
∗
(
−
3
+
250
∗
β
2
∗
C
3
)
/
β
+
(
6
/
25
)
∗
t
a
n
h
(
C
1
−
(
1
/
10
)
∗
x
/
β
+
C
3
∗
t
)
/
β
+
(
3
/
25
)
∗
t
a
n
h
(
C
1
−
(
1
/
10
)
∗
x
/
β
+
C
3
∗
t
)
2
/
β
{\displaystyle u(x,t)=(1/25)*(-3+250*\beta ^{2}*_{C}3)/\beta +(6/25)*tanh(_{C}1-(1/10)*x/\beta +_{C}3*t)/\beta +(3/25)*tanh(_{C}1-(1/10)*x/\beta +_{C}3*t)^{2}/\beta }
u
(
x
,
t
)
=
−
(
1
/
25
)
∗
(
3
+
250
∗
β
2
∗
C
3
)
/
β
−
(
6
/
25
)
∗
t
a
n
h
(
C
1
+
(
1
/
10
)
∗
x
/
β
+
C
3
∗
t
)
/
β
+
(
3
/
25
)
∗
t
a
n
h
(
C
1
+
(
1
/
10
)
∗
x
/
β
+
C
3
∗
t
)
2
/
β
{\displaystyle u(x,t)=-(1/25)*(3+250*\beta ^{2}*_{C}3)/\beta -(6/25)*tanh(_{C}1+(1/10)*x/\beta +_{C}3*t)/\beta +(3/25)*tanh(_{C}1+(1/10)*x/\beta +_{C}3*t)^{2}/\beta }
u
(
x
,
t
)
=
(
1
/
25
)
∗
(
−
(
250
∗
I
)
∗
β
2
∗
C
3
−
3
)
/
β
−
(
6
/
25
∗
I
)
∗
t
a
n
(
C
1
−
(
1
/
10
∗
I
)
∗
x
/
β
+
C
3
∗
t
)
/
β
−
(
3
/
25
)
∗
t
a
n
(
C
1
−
(
1
/
10
∗
I
)
∗
x
/
β
+
C
3
∗
t
)
2
/
β
{\displaystyle u(x,t)=(1/25)*(-(250*I)*\beta ^{2}*_{C}3-3)/\beta -(6/25*I)*tan(_{C}1-(1/10*I)*x/\beta +_{C}3*t)/\beta -(3/25)*tan(_{C}1-(1/10*I)*x/\beta +_{C}3*t)^{2}/\beta }
u
(
x
,
t
)
=
(
1
/
25
)
∗
(
−
(
250
∗
I
)
∗
β
2
∗
C
3
−
3
)
/
β
+
(
6
/
25
∗
I
)
∗
c
o
t
(
C
1
−
(
1
/
10
∗
I
)
∗
x
/
β
+
C
3
∗
t
)
/
β
−
(
3
/
25
)
∗
c
o
t
(
C
1
−
(
1
/
10
∗
I
)
∗
x
/
β
+
C
3
∗
t
)
2
/
β
{\displaystyle u(x,t)=(1/25)*(-(250*I)*\beta ^{2}*_{C}3-3)/\beta +(6/25*I)*cot(_{C}1-(1/10*I)*x/\beta +_{C}3*t)/\beta -(3/25)*cot(_{C}1-(1/10*I)*x/\beta +_{C}3*t)^{2}/\beta }
KdV-Burgers equation traveling wave plot
KdV-Burgers equation traveling wave plot
KdV-Burgers equation traveling wave plot
KdV-Burgers equation traveling wave plot
KdV-Burgers equation traveling wave plot 2
KdV-Burgers equation traveling wave plot
KdV-Burgers equation traveling wave plot
KdV-Burgers equation traveling wave plot
|
^ Shu, Jian-Jun. The proper analytical solution of the Korteweg-de Vries-Burgers equation. Journal of Physics A-Mathematical and General. 1987, 20 (2): 49–56. doi:10.1088/0305-4470/20/2/002 .
^ 李志斌编著 《非线性数学物理方程的行波解》 61页 科学出版社 2008
*谷超豪 《孤立子 理论中的达布变换 及其几何应用》 上海科学技术出版社
*阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年
李志斌编著 《非线性数学物理方程的行波解》 科学出版社
王东明著 《消去法及其应用》 科学出版社 2002
*何青 王丽芬编著 《Maple 教程》 科学出版社 2010 ISBN 9787030177445
Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press
Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
Dongming Wang, Elimination Practice,Imperial College Press 2004
David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759