福克-普朗克方程
外观
福克-普朗克方程(Fokker–Planck equation)描述粒子在势能场中受到随机力后,随时间演化的位置或是速度的分布函数 [1] 。此方程以荷兰物理学家阿德里安·福克[2]与马克斯·普朗克[3]的姓氏来命名。
一维 x方向上,福克-普朗克方程有两个参数,一是拖拽参数 D1(x,t),另一是扩散 D2(x,t)
在 维空间中的福克-普朗克方程是
其他
[编辑]
若V=0,则福克-普朗克方程成为布朗运动
与随机方程的关系
[编辑]福克-普朗克方程可以用来计算随机过程里随机微分方程中分布函数的解。
一个受随机力的经典粒子,经由朗之万方程可以得到福克-普朗克方程。另外再借由福克-普朗克方程也可推导薛定谔方程[4]。
参考资料
[编辑]- ^ Leo P. Kadanoff. Statistical Physics: statics, dynamics and renormalization. World Scientific. 2000. ISBN 9810237642.
- ^ A. D. Fokker, Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld, Ann. Phys. 348 (4. Folge 43), 810–820 (1914).
- ^ M. Planck, Sitz.ber. Preuß. Akad. (1917).
- ^ Edward Nelson ,"Derivation of the Schrödinger Equation from Newtonian Mechanics",Phys. Rev. 150, 1079–1085 (1966)
相关条目
[编辑]延伸阅读
[编辑]- Hannes Risken, "The Fokker–Planck equation : Methods of Solutions and Applications", 2nd edition, Springer Series in Synergetics, Springer, ISBN 3-540-61530-X.
- David Tong. Kinetic Theory. Ch. 3. https://www.damtp.cam.ac.uk/user/tong/kinetic.html (页面存档备份,存于互联网档案馆)
- Scott. Applied Stochastic Processes.