跳转到内容

泊松极限定理

维基百科,自由的百科全书

概率论中,泊松极限定理是指,在一定条件下,泊松分布可以用于近似二项分布,可以用来解释为什么泊松分布适合描述单位时间内随机事件发生的次数。这个定理是以法国数学家西梅翁·德尼·泊松的名字命名。该定理的一个推广形式是Le Cam定理

定理陈述

[编辑]

是一个中的实数列,如果收敛到一个有限极限 ,那么

证明

[编辑]
.

考虑到

以及

这就推出所需结论

另一个证明

[编辑]

斯特林公式

以及 :

因为当, ,所以:

生成函数

[编辑]

我们也可以通过使用二项分布的生成函数来证明这个定理:

二项式定理。令的同时使为常数,可以发现

这是泊松分布的生成函数 (第二个等式成立是由于指数函数的定义)。

参考文献

[编辑]